Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Fluid flow and pore‐pressure cycling are believed to control slow slip events (SSEs), such as those that frequently occur at the northern Hikurangi margin of New Zealand. To better understand fluid flow in the forearc system we examined the relationship between several physical properties of Cretaceous‐to‐Pliocene sedimentary rocks from the Raukumara peninsula. We found that the permeability of the deep wedge is too low to drain fluids, but fracturing increases permeability by orders of magnitude, making fracturing key for fluid flow. In weeks to months, plastic deformation, swelling, and possibly not‐yet‐identified mechanisms heal the fractures, restoring the initial permeability. We conclude that overpressures at the northern HM might partly dissipate during SSEs due to enhanced permeability near faults. However, in the months following an SSE, healing in the prism will lower permeability, forcing pore pressure to rise and a new SSE to occur.more » « less
-
null (Ed.)SUMMARY We have developed a linear 3-D gravity inversion method capable of modelling complex geological regions such as subduction margins. Our procedure inverts satellite gravity to determine the best-fitting differential densities of spatially discretized subsurface prisms in a least-squares sense. We use a Bayesian approach to incorporate both data error and prior constraints based on seismic reflection and refraction data. Based on these data, Gaussian priors are applied to the appropriate model parameters as absolute equality constraints. To stabilize the inversion and provide relative equality constraints on the parameters, we utilize a combination of first and second order Tikhonov regularization, which enforces smoothness in the horizontal direction between seismically constrained regions, while allowing for sharper contacts in the vertical. We apply this method to the nascent Puysegur Trench, south of New Zealand, where oceanic lithosphere of the Australian Plate has underthrust Puysegur Ridge and Solander Basin on the Pacific Plate since the Miocene. These models provide insight into the density contrasts, Moho depth, and crustal thickness in the region. The final model has a mean standard deviation on the model parameters of about 17 kg m–3, and a mean absolute error on the predicted gravity of about 3.9 mGal, demonstrating the success of this method for even complex density distributions like those present at subduction zones. The posterior density distribution versus seismic velocity is diagnostic of compositional and structural changes and shows a thin sliver of oceanic crust emplaced between the nascent thrust and the strike slip Puysegur Fault. However, the northern end of the Puysegur Ridge, at the Snares Zone, is predominantly buoyant continental crust, despite its subsidence with respect to the rest of the ridge. These features highlight the mechanical changes unfolding during subduction initiation.more » « less
-
Abstract Marine multichannel and wide‐angle seismic data constrain the distribution of seamounts, sediment cover sequence and crustal structure along a 460 km margin‐parallel transect of the Hikurangi Plateau. Seismic reflection data reveals five seamount up‐to 4.5 km high and 35–75 km wide, with heterogeneous internal velocity structure. Sediment cover decreases south‐to‐north from ∼4.5 km to ∼1–2 km. The Hikurangi Plateau crust (VP5.5–7.5 km/s) is 11 ± 1 km thick in the south, but thins by 3–4 km further north (∼7–8 km). Gravity models constructed along two seismic lines show the reduction in crustal thickness persists further east, coinciding with a bathymetric scarp. Gravity data suggest the transition in crustal thickness may reflect spatial variability in deformation and lithospheric extension associated with plateau breakup. Variability in the thickness of subducting crust may contribute to differences in megathrust geometry, upper‐plate stress state and high‐rates of contraction and uplift along the southern Hikurangi margin.more » « less
-
Abstract Solander Basin is characterized by subduction initiation at the Pacific‐Australia plate boundary, where high biological productivity is found at the northern edge of the Antarctic Circumpolar Current. Sedimentary architecture results from tectonic influences on accommodation space, sediment supply and ocean currents (via physiography); and climate influence on ocean currents and biological productivity. We present the first seismic‐stratigraphic analysis of Solander Basin based on high‐fold seismic‐reflection data (voyage MGL1803, SISIE). Solander Trough physiography formed by Eocene rifting, but basinal strata are mostly younger than ca. 17 Ma, when we infer Puysegur Ridge formed and sheltered Solander Basin from bottom currents, and mountain growth onshore increased sediment supply. Initial inversion on the Tauru Fault started at ca. 15 Ma, but reverse faulting from 12 to ca. 8 Ma on both the Tauru and Parara Faults was likely associated with reorganization and formation of the subduction thrust. The new seabed topography forced sediment pathways to become channelized at low points or antecedent gorges. Since 5 Ma, southern Puysegur Ridge and Fiordland mountains spread out towards the east and Solander Anticline grew in response to ongoing subduction and growth of a slab. Solander Basin had high sedimentation rates because (1) it is sheltered from bottom currents by Puysegur Ridge; and (2) it has a mountainous land area that supplies sediment to its northern end. Sedimentary architecture is asymmetric due to the Subtropical Front, which moves pelagic and hemi‐pelagic sediment, including dilute parts of gravity flows, eastward and accretes contourites to the shelf south of Stewart Island. Levees, scours, drifts and ridges of folded sediment characterize western Solander Basin, whereas hemi‐pelagic drape and secondary gravity flows are found east of the meandering axial Solander Channel. The high‐resolution record of climate and tectonics that Solander Basin contains may yield excellent sites for future scientific ocean drilling.more » « less
-
Abstract Subduction initiation often takes advantage of previously weakened lithosphere and may preferentially nucleate along pre‐existing plate boundaries. To evaluate how past tectonic regimes and inherited lithospheric structure might lead to self‐sustaining subduction, we present an analysis of the Puysegur Trench, a young subduction zone with a rapidly evolving tectonic history. The Puysegur margin, south of New Zealand, has experienced a transformation from rifting to seafloor spreading to strike‐slip, and most recently to incipient subduction, all in the last ∼45 million years. Here we present deep‐penetrating multichannel reflection and ocean‐bottom seismometer tomographic images to document crustal structures along the margin. Our images reveal that the overriding Pacific Plate beneath the Solander Basin contains stretched continental crust with magmatic intrusions, which formed from Eocene‐Oligocene rifting between the Campbell and Challenger plateaus. Rifting was more advanced to the south, yet never proceeded to breakup and seafloor spreading in the Solander Basin as previously thought. Subsequent strike‐slip deformation translated continental crust northward causing an oblique collisional zone, with trailing ∼10 Myr old oceanic lithosphere. Incipient subduction transpired as oceanic lithosphere from the south forcibly underthrust the continent‐collision zone. We suggest that subduction initiation at the Puysegur Trench was assisted by inherited buoyancy contrasts and structural weaknesses that were imprinted into the lithosphere during earlier phases of continental rifting and strike‐slip along the plate boundary. The Puysegur margin demonstrates that forced nucleation along a strike‐slip boundary is a viable subduction initiation scenario and should be considered throughout Earth's history.more » « less
An official website of the United States government
